Mutational Robustnhes
and Automatic Prograi
Repailr

Ethan Fast
SFI REU 2010

Mentor: Stephanie Forrest

YOU KNOW THIS METAL I SPEND MOSTOF MY LFE | | BUT TODAY, THE PATTERN
RECTANGLE FULL OF PRESSING BUTTONS TO MAKE | | OF LIGHTS 1S AL WROMG!
UTTLE LIGHTS? THE PATTERN OF LIGHTS { OH GOD! TRY

CHANGE HOWEVER T WANT. PRESSING MORE

\ YEAH. ITSNOT ~ BUTIONS!
O (. HELPING!

<\ (

Automatic Program Repair
viaGenetic Programming

VWeimer and Forrest

An optimization technigue inspired by evolution

GP Program Repair

program source code
Input regression tests
test case lIllustrating bug

generate program variants
Process run them on test cases
selection, crossover, mutation

Output new program that passes tests
or, no solution

4

Representation

Individuals represented as ASTs

5

Weighted Path

A means of fault localization

Good Path

Weighted Path

A means of fault localization

%
\

Bad Path

Weighted Path

A means of fault localization

Final Path

Mutation: Swap

Exchange two nodes on the tree

Mutation: Append

Copy a node to elsewhere on the tree

Mutation: Delete

Delete a node from the tree

GP Program Repair Deta

To compute btness, compile a varian
If it fails to compile, themn =
Otherwise, run test cases

Now, =

Negative test case(s) more heavily
weighted

12

Does It actually work”

deroff gcd look
iIndent unig zune
atris leukocyte Imagemagick
tiff nullhttpd python
php lighttpd openldap

A few repaired programs

13

So what aboutobustnes?

Some DebPnitions

:sthe probabillity o
a change In genotype affecting a chan
IN phenotype

‘pdescribed by

region of differing genotypes assignhed
the same btness value

15

Motivation

High mutational robustness seems to
support the idea of software

Robustness and neutral Ptness may be
Ideas for repairing more

16

Questions

How do we measure robustness?

Given a metric, how mutationally
robust are typical programs?

How does robustness affect automat
program repair?

17

Measuring Robustne:

Original Program Apply Mutation(x1000)

Metrics:
Average distance In fitness
Percent of mutations that are neutral

18

Your Intuition

Suppose that we make a single mutation
some arbitrary program.

How often will its behavior change?

19

Percent of Mutations that are Neutral

Neutral Mutations

50

37.5

A

12.5

deroff look uniqg gcd iIndent leukocyte

20

What
are likely to result In
neutral mutations?

Percent Neutral Mutations

By Mutation Operators

B append B swap B delete

70

SYRS

35

17.5

deroff look uniq gcd leukocyte

22

So what about that
welghted pati

Shouldn't one look at programs more generally?

With and Without Path

B with path B without path

Percent of Mutations that are Neutral

deroff look uniqg gcd leukocyte

24

Percent of Mutations that are Neutral

Robusthess vs. Code S

100
75
@)
50 @
O O O
O O
25
0
1 10 100 1000 10000 100000

Lines of Code

25

But perhaps my tests suit
are simply quite terrible”

Do these results actually !

26

nt of Mutations that are Neutral

Perce

Neutral Mutations on
Large Suites

39

AS WA

19.5

9.75

leukocyte

A Non-Trivial Test Suit

#0901 AUTH fails when a wrong password is given
#002 Arbitrary command gives an error when AUTH is required
#0903 AUTH succeeds when the right password is given

#0945 RENAME where source and dest key is the same
#046 DEL all keys again (DB @)

#047 DEL all keys again (DB 1)

#948 MOVE basic usage

#049 MOVE against key existing in the target DB

#255 SORT with BY against the newly created list

#256 SORT with BY Chash field) against the newly created list

#257 SORT with GET (key+hash) with sanity check of each element (list)
#258 SORT with BY, but against the newly created set

#259 SORT with BY (hash field), but against the newly created set

#260 SORT with BY and STORE against the newly created list

#261 SORT with BY (hash field) and STORE against the newly created list

Line: 17 Column: 81 Plain Text . v TabSize: 4 7 —

28

Percent Neutral Mutations

By Mutation Operators

B append B swap B delete
80

|5jn|"

leukocyte potion vyguon redis

AS

Stepping Back

Surprising to see suadmnghlevels of
sat this level of representation

Possibly * to the success of
Program Repair via GP

Quite counter-intuitive (so we assert)

* robustness |= good (tradeoft with

30

Relating Robustness
Repalir Difbculty

Fithess

15

10

A Problem?

— Easy — OK — Hard

CO

C1l

Mutations to Repair

32

Three-Step Repair

A pathological case study

15

10

CO C1 C2 C3

How might we solve this

Use a representation, with &
degree of

Inspiration: & chromosomal structure

Change the of the Ptness landscap
leading to repair

34

Fithess

15

10

The Basic ldea

— New Rep =— Old Rep

)

gy

CO

C1l

Mutations to Repair

35

New Representation

o Vo

Va
diploid structure b
@

36 VIDnaI

Upshot

Mutations can be made to program segme
that are

A pPtness gradient to repair

) Occasionally these non-
functional mutations will be transformed In
functional mutations

37

Percent neutral mutations

New Rep More Robus

B OldRep [New Rep

30

deroff [o]0] uniq iIndent gcd leukocyte average
38

Preliminary Results

Of a Mixed Nature
repalr found 3x as often

Three-step repair never found

Working on Additional Strategies

Different representations

Fitness function

39

Conclusions

Programs aresurprisingly robust

Result holds forargeandcomplicated
programs andest suites

But morerobust representationmay
help In repairing certain kinds of bug

40

Questions?

Suggestions are also welcome

int main(int argv, char * argc[]){
int x = atoi(argc[1]);
int pl = 0;
int p2 = 0;
int p3 = 0;
//pl = 7;

iy A,
// Mo _— _,‘/’l

/[)3 — ;’
int now = pl+p2+p3;
if(x == 1){

printf("%ﬂ:%d:%d\n",x,p1-p2-p3,nOWfI91+Pz+P3);

}
if(x-—Z){
printf("%d:%d:%d\n",x,pl-p2-p3, now==p1l+p2+p3);
}
if(X == 3){
printf("%d:%d:%d\n",x,pl-p2-p3, now==pl+p2+p3);
}
if(x == 4){
printf("%d:%d:%d\n",x,pl-p2-p3, now==pl+p2+p3);
}
if(Xx == 5){
printf("%d:%d:%d\n",x,pl-p2-p3, now==pl+p2+p3);
}
if(x == 666) {
printf("%d:%d:%d:%d\n",x,pl+p2+p3,pl-p2-p3, now==pl+p2+p3);
}
Pl = 7;
p2 = 3;
p3 = 4;

Line: 31 Column 2 = v Tab Size: 4 7 main

Robustness Benchma

Program MR * Neutral **
deroff 20% 34%
look 20% 40%
unig 24% 38%
iIndent 16% 48%
gcd 23% 30%
leukocyte 19% 41%

* measured average change in test case btness
** percent of mutations that do not affect btness

43

With Mutation Operators

Program| MR * | Neutral ** | Append| Swap | Delete
deroff 20% 31% 30% 11% 59%
folo] ¢ 20% 43% 40% 14% 46%
unig 24% 34% 43% 14% 43%
gcd 23% 34% 55% 19% 25%
Ieukocytq 19% 39% 12% 23% 64%

* measured average change in test case btness
** percent of mutations that do not affect btness

44

With No Path Weights

Program Neutral Append Swap Delete
deroff 60% 28% 20% 52%
look 53% 34% 15% 51%
unig 55% 27% 17% 56%
gcd 37% 61% 11% 28%
leukocyte 39% 32% 13% 56%
Even to random mutations

45

For Larger Test Suites

Program Neutral | Append| Swap| Delete

leukocyte 35% 26% 14% | 60%

potion 39% 18% 6% 76%
vyguon 32% 22% 4% 4%
redis 31% 26% 10% | 64%

Seems not to be artifact of small test suites

46

New Rep More Robus

*

Program | Old Rep* | New Rep *
deroff 34% 64%
look 40% 79%
unig 38% 63%
indent 48% 54%
gcd 30% 69%
leukocyte 41% 66%0
Average 38.9% 65.8%

percent of mutations that do not affect btness

47

Weighted Path

GCD
PR S
if (a==0) (t\;v !h=ilz) printf(...a) return
v v
{ block } { block } { block }
v v
printf(...b) if (a>Db)
¥ X
{ block } { block }
a=a-b b=b-a

48

Negative Test Case

Weighted Path

Weighted Path

GCD
AR S
if (a==0) (t\;v !h=iI%) printf(...a) return
v v
{ block } { block } { block }
v v
printf(...b) if (a>Db)
¥
{ block } { block }
a=a-b b=b-a

50

Final Path

ﬂ Swapping

°

